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In order to elucidate the relation between thermodynamic quantities, the defect structure, and the

defect equilibrium in La2�xSrxNiO4+d, statistical thermodynamic calculation is carried out and calculated

results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and

partial molar entropy of oxygen are obtained from d-P(O2)–T relation by using Gibbs–Helmholtz

equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before

by authors, localized electron model and delocalized electron model which could well explain the

variation of oxygen content of La2�xSrxNiO4+d. Although assumed defect species and their equilibrium

are different, the results of thermodynamic calculation by localized electron model and delocalized

electron model show minor difference. Calculated results by the both models agree with the

thermodynamic quantities obtained from oxygen nonstoichiometry of La2�xSrxNiO4+d.

& 2009 Elsevier Inc. All rights reserved.
1. Introduction

Because of high mixed conductivities of oxide ions and electrons
and high catalytic activity, Ni based K2NiF4 type oxides are expected
as the component of electrochemical devices such as a cathode
material for solid oxide fuel cells [1], an oxygen permeation
membrane [2], a catalyst for the reforming of hydrocarbons [2,3].
Earlier works revealed that La2NiO4+d shows large oxygen excess
composition [4–6]. Jorgensen et al. carried out the neutron
diffraction measurement, and elucidated that the interstitial oxygen
exists at the center of La tetrahedron in La2NiO4+d [7]. Since
interstitial oxygen becomes a major ionic carrier and holes are
simultaneously generated to retain charge neutrality, interstitial
oxygen formation significantly affects the electrochemical proper-
ties of K2NiF4 type oxides. Therefore, it is essential to elucidate how
oxygen nonstoichiometry emerges in K2NiF4 type oxides.

In the previous work, we reported oxygen nonstoichiometry
and defect equilibrium in La2�xSrxNiO4+d (x ¼ 0, 0.1, 0.2, 0.3, 0.4)
as a function of P(O2), T, and Sr content, x [8]. La2�xSrxNiO4+d

shows oxygen excess and oxygen deficiency depending on P(O2), T,
and x. In order to elucidate how oxygen nonstoichiometry
emerges, two defect equilibrium models were proposed under
the assumption that the defects are randomly distributed. One is
localized electron model and the other is delocalized electron
model. Although electronic state is completely different, both
defect equilibrium models can well explain oxygen nonstoichio-
metric behavior. This indicates that the electronic state of
La2�xSrxNiO4+d is intermediate between the localized state and the
ll rights reserved.

. Nakamura).
itinerant state [8]. There are only limited reports about the
nonstoichiometric compounds which show metallic band conduc-
tion. La1�xSrxCoO3�d and Ag2S were treated as the itinerant electron
system [9,10]. Kanai et al. reported that the electronic state of
La2�xSrxCuO4�d transits from the metallic state to the localized state
depending on the Cu mean valence at 1073–1273 K [11]. Mizusaki
et al. have clearly shown the relationship between defect equili-
brium and thermodynamic quantities of La1�xSrxFeO3�d, which is a
typical localized electron system [12,13].

In this paper, we clarify the relation between the thermo-
dynamic quantities, the defect structure, and the defect equili-
brium in the La2�xSrxNiO4+d. Two statistical thermodynamic
models are derived from localized electron model and delocalized
electron model. Then, the thermodynamic quantities calculated
from the statistical thermodynamic model are compared to those
obtained from nonstoichiometric data of La2�xSrxNiO4+d.

2. Partial molar enthalpy and entropy of oxygen

The P(O2) is related to the oxygen chemical potential in
La2�xSrxNiO4+d, mO, by the equation

mO � m�O ¼
RT

2
ln PðO2Þ (1)

where R and T are the gas constant and the temperature,
respectively. Superscript 1 denotes the standard state, equilibrium
state with 1 bar O2. From the Gibbs–Helmholtz equation, we obtain

hO � h�O ¼
@

@ð1=TÞ

R

2
ln PðO2Þ

� �
(2)

sO � s�O ¼ �
@

@T

RT

2
ln PðO2Þ

� �
(3)
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Fig. 1. The relationship between R/2 ln P(O2) and 1/T (a) and RT/2 ln P(O2) and T (b)

of La1.8Sr0.2NiO4+d at selected oxygen content.
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Fig. 2. Partial molar enthalpy of oxygen (a) and partial molar entropy of oxygen (b).
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where hO � h�O and sO � s�O are the partial molar enthalpy of oxygen,
and the partial molar entropy of oxygen, respectively. Fig. 1 shows
R/2 ln P(O2) vs. 1/T plots and RT ln P(O2) vs. T plots of La1.8Sr0.2NiO4+d

at each oxygen content. The plots are obtained from the oxygen
nonstoichiometric data of La2�xSrxNiO4+d [8]. Linear plots in Fig. 1
indicate that hO � h�O and sO � s�O are essentially independent of
temperature.

Fig. 2 shows hO � h�O and sO � s�O of La2�xSrxNiO4+d as a function
of d and x. In the calculation, oxygen nonstoichiometric data in
Ref. [8] is used. The abrupt change of thermodynamic quantities at
d ¼ 0 indicates that the oxygen defect structure changes suddenly
at the stoichiometric composition. The value of hO � h�O ap-
proaches zero as d increases in the oxygen excess region, while
they are almost independent of d in the oxygen deficient region.
This means that the system is like an ideal solution in the oxygen
deficient region and deviate from ideal-solution-like state in the
oxygen excess region. In the oxygen deficient region, the the
variation of the interaction among quasi-chemical species is
negligibly small, while that becomes significant in oxygen excess
region. The change of hO � h�O in oxygen excess region was caused
by the defect species, interstitial oxygen, in the system. The
enthalpy change was introduced in the defect equilibrium analysis
as a regular solution approximation for the interstitial oxygen
formation reaction [8]. At given oxygen content, hO � h�O ap-
proaches zero as the Sr content increases in both oxygen excess
and oxygen deficient regions. Regular-solution-like state holds for
Sr distribution as well as the interstitial oxygen formation.
3. Defect equilibrium model for La2�xSrxNiO4+d

In this section, two defect equilibrium models of our preceding
work are briefly outlined [8]. One is the defect equilibrium with
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localized electron (3.1) and the other is the defect equilibrium
with delocalized electron (3.2).
3.1. Defect equilibrium with localized electron

Defect equilibrium model with localized electron is con-
structed by considering the equilibrium among Sr0La, O00i , V��O ,
Ni�Ni, and Ni�Ni. Defect species are expressed by the Kröger–Vink
notation [14]. The incorporation of oxygen into the interstitial site,
and the oxygen vacancy formation are expressed as

1
2O2 þ V�i þ 2Ni�Ni2O00i þ 2Ni�Ni (4)

O�O þ 2Ni�Ni2
1
2O2 þ V��O þ 2Ni�Ni (5)

The exchange of interstitial oxygen and oxygen sublattice is
expressed by the Frenkel defect formation

O�O þ V�i 2O00i þ V��O (6)

The standard Gibbs free energy change for reactions (4)–(6) are

DG�I;loc ¼ �RT ln
½O00i �½Ni�Ni�

2

PðO2Þ
1=2
½V�i �½Ni�Ni�

2
� RT ln

gO00i
g2

Ni�Ni

g2
Ni�ni

(7)

DG�v;loc ¼ �RT ln
PðO2Þ

1=2
½V��O �½Ni�Ni�

2

½O�O �½Ni�Ni�
2

� RT ln
gV��O

g2
Ni�Ni

gO�O
g2

Ni�Ni

(8)

DG�f ;loc ¼ �RT ln
½O00i �½V

��
O �

½O�O �½V
�
i �
� RT ln

gO00i
gV��O

gO�O

(9)

where g is the activity coefficient for quasi-chemical species and
the subscript i denotes quasi-chemical species. The relationship
between Gibbs free energy changes of reactions (4)–(6) is
expressed by

DG�f ;loc ¼ DG�I;loc þDG�v;loc (10)

The amount of oxygen nonstoichiometry, d, is expressed by

½O00i � � ½V
��
O � ¼ d (11)

The ratio of the anion and cation is balanced by

½Sr0La� þ ½La�La� ¼ 2 (12)

½Ni�Ni� þ ½Ni�Ni� ¼ 1 (13)

½O�O � þ ½V
��
O � ¼ 4 (14)

½O00i � þ ½V
�
i � ¼ 2 (15)

Because interstitial oxygen exists at the center of La tetrahedron,
the structural limit for the maximum oxygen excess is 2 as
expressed in Eq. (15) [7,15]. The charge neutrality is maintained by
the equation

½Sr0La� þ 2½O00i � ¼ ½Ni�Ni� þ 2½V��O � (16)

As mentioned previously, the system behaves like an ideal
solution in the oxygen deficient region, while it deviates from
the ideal-solution-like state in the oxygen excess region. An ideal
solution approximation is applied to the reactions (5) and (6), i.e.
the interaction between randomly distributed quasi-chemical
species is negligible. The products of the activity coefficients in
Eqs. (8) and (9) are considered as unity. A regular solution
approximation is applied to the reaction (4) with an excess
enthalpy change. As a first approximation, we assume that the
relation between hO � h�O and ½O00i � is linear. Then, excess enthalpy
change is expressed by

DHex;loc ¼ �RT ln
gO00i

g2
Ni�Ni

g2
Ni�Ni

 !
¼ a½O00i � (17)

where a is a constant which is independent of d and T for given
constraints. This approximation provides good fitting results [8].
From Eqs. (7), (9), (11)–(17), the relation between d and P(O2) can
be obtained with the fitting parameters, DG�I;loc, a, and DG�f ;loc.

3.2. Defect equilibrium with delocalized electron

Defect equilibrium model with itinerant electron is con-
structed by considering the defect equilibrium among Sr0La, O00i ,
V��O , and free hole in the valence band, h�. Here, we consider the
metal like band conduction as suggested by Goodenough et al.
[16,17]. The equilibrium between the sample and surrounding gas
is expressed by the equations

1
2O2 þ V�i 2O00i þ 2h� (18)

O�O þ 2h�21
2O2 þ V��O (19)

The exchange of the interstitial and oxygen sublattice is
represented by Eq. (6). Since La2�xSrxNiO4+d is a two dimensional
conductor, density of state is independent of energy level of
electron [18]. Then, the chemical potential of hole, mh� , can be
expressed by using the analytical solution of the integration of
Fermi–Dirac distribution function [8]. That is

mh� ¼ m�h� þ RT ln exp
NA

DVVm
½h��

� �
� 1

� �
(20)

where m�h� , DV, NA, and Vm are the mh� in La2�xSrxNiO4+d in
equilibrium with 1 bar O2, the density of state in the valence band,
the Avogadro’s constant, and the molar volume, respectively. The
standard Gibbs free energy change for the reactions (18), (19) and
(6) are

DG�I;del ¼ � RT ln
½O00i �

PðO2Þ
1=2
½V�i �
� RT ln gO00i

� 2RT ln exp
NA

DVVm
½h��

� �
� 1

� �
(21)

DG�v;del ¼ � RT ln
PðO2Þ

1=2
½V��O �

½O�O �
� RT ln

gV��O

gO�O

þ 2RT ln exp
NA

DVVm
½h��

� �
� 1

� �
(22)

and

DG�f ;del ¼ �RT ln
½O00i �½V

��
O �

½O�O �½V
�
i �
� RT ln

gO00i
gV��O

gO�O

(23)

respectively. Charge neutrality for delocalized electron system is
maintained by

½Sr0La� þ 2½O00i � ¼ ½h
�
� þ 2½V��O � (24)

Similar to the localized electron model, an ideal solution
approximation is applied to the reactions (6) and (19) and a
regular solution approximation is applied to the reaction (18) by
the equation

DHex;del ¼ �RT ln gO00i
¼ b½O00i � (25)

where b is a constant which is independent of d and T. From Eqs.
(11), (12), (14), (15), (21), and (23)–(25), the relation between d
and P(O2) can be obtained with the fitting parameters, DG�I;del, b,
DG�f ;del, and DV.
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4. Statistical thermodynamic model for La2�xSrxNiO4+d

4.1. Statistical thermodynamic model with localized electron

The statistical thermodynamic model is formulated from the
Gibbs free energy of La2�xSrxNiO4+d, G. When electron is localized,
G is expressed by

G ¼ G� þ
X

i

ximi ¼ G� þ
X

i

xim�i þ
X

i

xiRT ln gixi (26)

where x, and m represents the molar fraction and the chemical
potential, respectively. The oxygen chemical potential in
La2�xSrxNiO4+d is the differentiation of G with the number of
moles of oxygen, 4+d. Then, mO can be calculated by

mO ¼
@G

@ð4þ dÞ
¼
@G

@d
¼
X

i

@xi

@d
m�i þ

X
i

RT
@xi

@d
ln gi

þ
@

@d

X
i

RTxi ln xi (27)

here, we assume that m1 and g of quasi-chemical species are
independent of d.

Statistical thermodynamic model with localized electron is
derived by combining Eqs. (11)–(17) and (27). The configurational
entropy of La2�xSrxNiO4+d with localized electron, S(conf)loc, can
be calculated by

SðconfÞloc ¼ k ln
ð2NAÞ!

ð½Sr0La�NAÞ!ð½La�La�NAÞ!

� ��
þ ln

NA!

ð½Ni�Ni�NAÞ!ð½Ni�Ni�NAÞ!

� �

þ ln
ð4NAÞ!

ð½V��O �NAÞ!ð½O
�

O �NAÞ!

� �
þ ln

ð2NAÞ!

ð½O00i �NAÞ!ð½V
�
i �NAÞ!

� ��
(28)

where k is the Boltzmann constant. The partial molar entropy due
to configurational entropy, sO(conf)loc, is obtained by the differ-
entiation of S(conf)loc with respect to d

sOðconfÞloc ¼
@SðconfÞloc

@d
¼ k

@

@d
ln

ð2NAÞ!

ð½Sr0La�NAÞ!ð½La�La�NAÞ!

� ��

þ ln
NA!

ð½Ni�Ni�NAÞ!ð½Ni�Ni�NAÞ!

� �
þ ln

ð4NAÞ!

ð½V��O �NAÞ!ð½O
�

O �NAÞ!

� �

þ ln
ð2NAÞ!

ð½O00i �NAÞ!ð½V
�
i �NAÞ!

� ��
(29)

From the Stirling’s approximation and the relation of R ¼ kNA, we
obtain

sOðconfÞloc ¼ � R
@

@d
f½Sr0La�ln½Sr0La� þ ½La�La� ln½La�La�

þ ½Ni�Ni� ln½Ni�Ni� þ ½Ni�Ni� ln½Ni�Ni�

þ ½O�O � ln½O
�

O � þ ½V
��
O � ln½V

��
O �

þ ½O00i � ln½O
00

i � þ ½V
�
i � ln½V

�
i �g (30)

Eq. (30) is exactly the same as the third term in the right side of
the Eq. (27). From Eqs. (11)–(16) sOðconfÞloc is simplified to

sOðconfÞloc ¼ R ðln½V�i � � ln½O00i �Þ
@½O00i �

@d

�

þðln½O�O � � ln½V��O �Þ
@½V��O �

@d
þ 2 ln

1� ½Sr0La� � 2d
½Sr0La� þ 2d

� ��

(31)

The value of sOðconfÞloc can be calculated by Eq. (31) with the
defect concentration and the value of @½O00i �=@d and @½V��O �=@d.

The relationship between statistical thermodynamic
model and defect equilibrium model is derived as follows. From
Eqs. (11)–(17), (27), and (30), the formula for mO � m�O can be
simplified to

mO � m�O ¼
@½O00i �

@d
ðm�O00i þ 2m�Ni�Ni

� m�V�i � 2m�Ni�Ni
Þ

þ
@½V��O �

@d
ðm�V��O þ 2m�Ni�Ni

� m�O�O � 2m�Ni�Ni
Þ

þ
@½O00i �

@d
RT ln

gO00i
g2

Ni�Ni

g2
Ni�Ni

þ
@½V��O �

@d
RT ln

gV��O
g2

Ni�Ni

gO�O
g2

Ni�Ni

� TsOðconfÞloc � m�O (32)

The chemical potential of 1 bar oxygen gas, m�O2 ;gas, is related to m�O
by the equation

m�O2 ;gas ¼ 2m�O (33)

The Gibbs free energy changes for the reactions (4) and (5) are
expressed by chemical potential of quasi-chemical species by

DG�I;loc ¼ m�O00i þ 2m�Ni�Ni
� m�V�i � 2m�Ni�Ni

� 1=2m�O2 ;gas (34)

DG�v;loc ¼
1
2m
�
O2 ;gas þ m

�
V��O
þ 2m�Ni�Ni

� m�O�O � 2m�Ni�Ni
(35)

Using Eqs. (32)–(35) and the differentiation of Eq. (11) with d, we
obtain the partial molar quantities

mO � m�O ¼
@½O00i �

@d
ðDG�I;loc � DHex;locÞ þ

@½V��O �

@d
DG�v;loc � TsOðconfÞloc

(36)

hO � h�O ¼
@½O00i �

@d
ðDH�I;loc � DHex;locÞ þ

@½V��O �

@d
DH�v;loc (37)

sO � s�O ¼
@½O00i �

@d
DS�I;loc þ

@½V��O �

@d
DS�v;loc þ sOðconfÞloc (38)

Eqs. (36)–(38) gives the relationship between partial molar
quantities and the fitting parameters determined by the defect
chemical analysis with localized electron model.
4.2. Statistical thermodynamic model with delocalized electron

Statistical thermodynamic model with itinerant electron is
derived by combining Eqs. (11), (12), (14), (15), and, (21)–(25).
When electron is itinerant, the Gibbs free energy of the system is
expressed by

G ¼ G� þ
X

i

ximi ¼ G� þ
X

i

xim�i þ
X

i

xiRT ln gixi

þ ½h��m�h� þ ½h
�
�RT ln exp

NA

DVVm
½h��

� �
� 1

� �
(39)

Unlike quasi-chemical species, free hole in the valence band is
uncountable for the configurational entropy. The configurational
entropy with delocalized electron, sOðconf :Þdel, can be expressed by

sOðconfÞdel ¼ � R
@

@d
f½Sr0La� ln½Sr0La� þ ½La�La� ln½La�La�

þ ½Ni�Ni� ln½Ni�Ni� þ ½O
�

O � ln½O
�

O � þ ½V
��
O � ln½V

��
O �

þ ½O00i � ln½O
00

i � þ ½V
�
i � ln½V

�
i �g (40)

The value of sOðconfÞdel can be calculated from the defect
concentrations by the equation

sOðconfÞdel ¼ R ðln½V�i � � ln½O00i �Þ
@½O00i �

@d

�
þðln½O�O � � ln½V��O �Þ

@½V��O �

@d

�
(41)

The relationship between statistical thermodynamic model and
defect equilibrium model is shown in the following part. The
formula for mO � m�O is derived from Eqs. (11), (12), (14), (15),
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Table 1
Values of the fitting parameters for the statistical thermodynamic models determined by the defect chemical analysis [8]: (a) fitting parameters for the statistical

thermodynamic model with localized electron, DH�loc, DS�loc, and a. The value of a for x ¼ 0, 0.1, and 0.4 were determined by the extrapolation and (b) fitting parameters for

the statistical thermodynamic model with delocalized electron, DH�del, DS�del, and b. The value of b for x ¼ 0, 0.1, and 0.4 were determined by the extrapolation.

x DH�I;loc (kJ mol�1) DS�I;loc (J mol�1 K�1) DH�f ;loc (kJ mol�1) DS�f ;loc (J mol�1 K�1) a (J mol�2)

(a)
0 �15772.6 �14572.6 16771.5 �2471.4 (�5.5�105)
0.1 �12575.4 �12975.2 17774.9 �2774.8 (�6.7�105)
0.2 �10471.5 �13871.4 18972.7 �2972.6 �7.470.2�105

0.3 �7576.1 �14075.9 19974.4 �3474.2 �8.470.4�105

0.4 �6371.9 �14371.8 19774.9 �4874.8 (�9.3�105)

(b)
x DH�I;del (kJ mol�1) DS�I;del (J mol�1 K�1) DH�f ;del (kJ mol�1) DS�f ;del (J mol�1 K�1) b (J mol�2)

0 �14471.8 �11771.7 16771.5 �2471.4 (�5.4�105)
0.1 �11973.6 �10673.5 17174.4 �3474.2 (�6.8�105)
0.2 �9971.1 �11671.0 18672.7 �3072.6 �7.970.2�105

0.3 �7171.6 �12371.6 20073.3 �4173.2 �9.570.3�105

0.4 �4671.7 �11271.6 21174.4 �4074.2 (�1.1�106)

hO-hO
o

sO-sOo

-

s -s

δ
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(21)–(25), (39), (40), and the differentiation of Eq. (11) with d. That is

mO � m�O ¼
@½O00i �

@d
m�O00i þ 2m�h� � m

�
V�i
�

1

2
m�O2 ;gas

� �

þ
@½V��O �

@d
m�V��O � m

�
O�O
� 2m�h� þ

1

2
m�O2 ;gas

� �

þ
@½O00i �

@d
RT ln gO00i

~þ
@½V��O �

@d
RT ln

gV��O

gO�O

� T sOðconfÞdel � 2R lnfexpðNA½h
�
�=DVVmÞ � 1g

�
�

2RNA½h
�
�=DVVm

1� expð�NA½h
�
�=DVVmÞ

�
(42)

The Gibbs free energy change for the reactions (18) and (19) are

DG�I;del ¼ m�O00i þ 2m�h� � m
�
V�i
� 1=2m�O2 ;gas (43)

DG�v;del ¼
1
2m
�
O2 ;gas þ m

�
V��O
� m�O�O � 2m�h� (44)

Using Eqs (42)–(44), one can obtain the partial molar quantities

mO � m�O ¼
@½O00i �

@d
ðDG�I;del �DHex;delÞ þ

@½V��O �

@d
DG�v;del

� T sOðconfÞdel � 2R lnfexpðNA½h
�
�=DVVmÞ � 1g

�
�

2RNA½h
�
�=DVVm

1� expð�NA½h
�
�=DVVmÞ

�
(45)

hO � h�O ¼
@½O00i �

@d
ðDH�I;del � DHex;delÞ þ

@½V��O �

@d
DH�v;del (46)

sO � s�O ¼
@½O00i �

@d
DS�I;del þ

@½V��O �

@d
DS�v;del þ sOðconfÞdel

� 2R lnfexpðNA½h
�
�=DVVmÞ � 1g

�
2RNA½h

�
�=DVVm

1� expð�NA½h
�
�=DVVmÞ

(47)

Eqs. (45)–(47) gives the relation between partial molar quantities
and the fitting parameters determined by the defect chemical
analysis with delocalized electron model.
δ

Fig. 3. Temperature dependence of hO � h�O and sO � s�O calculated by Eqs. (37) and

(38). Solid line (1173 K), dashed-two dotted line (1073 K), dashed-dotted line

(973 K), and dashed line (873 K).
5. Partial molar quantities calculated from the statistical
thermodynamic model

The parameters, DG�I;loc, DG�f ;loc, a, DG�I;del, DG�f ;del, b, and DV, were
determined in the defect chemical analysis on the oxygen
nonstoichiometry of La2�xSrxNiO4+d [8]. Obtained DH�, DS�, and
the constants, a and b, are summarized in Table 1. In the
delocalized electron model, best fitted results were obtained
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when DV is equal to 4.2�1021 eV�1 cm�3 which is slightly larger
than that of La2Ni0.9Fe0.1O4+d [19]. The value of DV is also used in
the statistical thermodynamic analysis.

To calculate the partial molar quantities, the value of @½O00i �=@d
and @½V��O �=@d is required. The equilibrium constant for the
equilibrium reaction (6) is expressed by

Kf ¼ exp �
DG�f
RT

� �
¼
½O00i �½V

��
O �

½O�O �½V
�
i �

gO00i
gV��O

gO�O

(48)

Here, the products of activity coefficients are considered to be
unity because an ideal solution approximation is applied for
reaction (6). From the differentiation of Eqs. (11) and (48) with
respect to d, the value of @½O00i �=@d and @½V��O �=@d can be calculated
δ

δ

Fig. 4. Partial molar enthalpy and entropy of oxygen for La2NiO4+d. Solid lines are

calculated by Eqs. (37) and (38) (localized electron model) and dashed lines are

calculated by Eqs. (46) and (47) (delocalized electron model).
from defect concentration by the equation

@½O00i �

@d
¼

½O00i � þ Kf ½V
�
i �

½V��O � þ Kf ½O
�

O � þ ½O
00

i � þ Kf ½V
�
i �

(49)

@½V��O �

@d
¼ �

½V��O � þ Kf ½O
�

O �

½V��O � þ Kf ½O
�

O � þ ½O
00

i � þ Kf ½V
�
i �

(50)

From Eqs. (31), (36), (41), (45), (49), (50), and the parameters in
Table 1, the thermodynamic quantities are calculated by using the
statistical thermodynamic model. Fig. 3 shows thermodynamic
quantities of La1.8Sr0.2NiO4+d at 873–1173 K calculated by Eqs. (37),
and (38) (localized electron model). The figure is focused near the
stoichiometric oxygen content, d ¼ 0. As temperature decreases,
δ

δ

Fig. 5. Partial molar enthalpy and entropy of oxygen for La1.9Sr0.1NiO4+d. Solid lines

are calculated by Eqs. (37) and (38) (localized electron model) and dashed lines are

calculated by Eqs. (46) and (47) (delocalized electron model).
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the change of hO � h�O and sO � s�O near the stoichiometric oxygen
content becomes more drastic. This behavior reflects the tem-
perature dependence of Kf. The value of Kf becomes smaller as
temperature decreases. The small difference between calculated
curves at different temperature appears only within very narrow
range of d. Calculated curves at different temperature are almost
the same. This is because the values of Kf for La2�xSrxNiO4+d are
extremely small, which are in the range of 10�14–10�8. It is
confirmed that calculated curves by Eqs. (46) and (47) (deloca-
lized electron model) also show minor difference against
temperature. Because the variation of calculated curves with
temperature is very small, only the calculated curve at 1073 K is
shown in the following discussion.

Figs. 4–8 show the partial molar quantities of La2�xSrxNiO4+d

obtained from d-P(O2)–T relation and those calculated from
δ

δ

Fig. 6. Partial molar enthalpy and entropy of oxygen for La1.8Sr0.2NiO4+d. Solid lines

are calculated by Eqs. (37) and (38) (localized electron model) and dashed lines are

calculated by Eqs. (46) and (47) (delocalized electron model).
statistical thermodynamic models. Statistical thermodynamic
models proposed here can quantitatively explain the dependence
of hO � h�O on d. In the case of sO � s�O, localized electron model
show better agreement than the delocalized electron model.
Calculated results of delocalized electron model are smaller than
sO � s�O obtained from the nonstoichiometric data. Goodenough
et al. suggested the coexistence of localized and itinerant electron
in La2NiO4+d [16,17]. The contribution of the coexistent state of
electron is not considered in this study. This may cause the
deviation between calculated results and sO � s�O obtained from
the T–d-P(O2) relationship.

The relationship between the thermodynamic quantities, the
defect structure, and the defect equilibrium of La2�xSrxNiO4+d is
clearly shown by using the statistical thermodynamic models and
defect equilibrium models. As shown in our pervious and this
δ

δ

Fig. 7. Partial molar enthalpy and entropy of oxygen for La1.7Sr0.3NiO4+d. Solid lines

are calculated by Eqs. (37) and (38) (localized electron model) and dashed lines are

calculated by Eqs. (46) and (47) (delocalized electron model).
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δ

δ

Fig. 8. Partial molar enthalpy and entropy of oxygen for La1.6Sr0.4NiO4+d. Solid lines

are calculated by Eqs. (37) and (38) (localized electron model) and dashed lines are

calculated by Eqs. (46) and (47) (delocalized electron model).

T. Nakamura et al. / Journal of Solid State Chemistry 182 (2009) 1121–11281128
works, both localized electron model and delocalized electron
model can explain thermodynamic quantities of La2�xSrxNiO4+d as
well as the oxygen nonstoichiometric behavior at temperature
range between 873–1173 K. This means that the electronic state of
La2�xSrxNiO4+d cannot be determined from the defect chemical
and the statistical thermodynamic analyses. So far, the electronic
state of La2�xSrxNiO4+d is controversial. Goodenough et al.
proposed the coexistent state of localized and itinerant electron
[16,17]. The coexistence state is established by itinerant dx2�y2

electron occupying sx2�y2 band and localized dz2 electron. On the
other hand, some researchers suggest that the conduction
mechanism is small polaron or diffusive-type charge transport
[20–23]. In both cases, the hypothesis is derived mainly from the
qualitative discussion. Further investigations are needed to
understand the electronic state and the conduction mechanism
of La2�xSrxNiO4+d.
6. Conclusions

Statistical thermodynamic models are constructed based on
the defect equilibrium models, localized electron model and
delocalized electron model. The relationship between thermo-
dynamic quantities and the defect equilibrium in La2�xSrxNiO4+d is
well expressed through the Gibbs free energy change of the
equilibrium among defect species. Calculated results by the
statistical thermodynamic models are compared to partial molar
enthalpy of oxygen and partial molar entropy of oxygen
determined from d-P(O2)–T relation of La2�xSrxNiO4+d. No sig-
nificant difference between the localized electron models and the
delocalized electron model is confirmed. Thermodynamic quan-
tities calculated by the statistical thermodynamic model show
good agreement with those determined from the oxygen
nonstoichiometric data.
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